We developed a custom smartwatch kernel that boosts the sampling rate of a smartwatch’s existing accelerometer to 4 kHz. Using this new source of high-fidelity data, we uncovered a wide range of applications. For example, we can use bio-acoustic data to classify hand gestures such as flicks, claps, scratches, and taps, which combine with on-device motion tracking to create a wide range of expressive input modalities. Bio-acoustic sensing can also detect the vibrations of grasped mechanical or motor-powered objects, enabling passive object recognition that can augment everyday experiences with context-aware functionality. Finally, we can generate structured vibrations using a transducer, and show that data can be transmitted through the human body. Overall, our contributions unlock user interface techniques that previously relied on special-purpose and/or cumbersome instrumentation, making such interactions considerably more feasible for inclusion in future consumer devices.
Wednesday, 23 November 2016
ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers
We developed a custom smartwatch kernel that boosts the sampling rate of a smartwatch’s existing accelerometer to 4 kHz. Using this new source of high-fidelity data, we uncovered a wide range of applications. For example, we can use bio-acoustic data to classify hand gestures such as flicks, claps, scratches, and taps, which combine with on-device motion tracking to create a wide range of expressive input modalities. Bio-acoustic sensing can also detect the vibrations of grasped mechanical or motor-powered objects, enabling passive object recognition that can augment everyday experiences with context-aware functionality. Finally, we can generate structured vibrations using a transducer, and show that data can be transmitted through the human body. Overall, our contributions unlock user interface techniques that previously relied on special-purpose and/or cumbersome instrumentation, making such interactions considerably more feasible for inclusion in future consumer devices.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment